A Strange Induction

Problem: Prove that for any sequence \(\{a_m\} \) such that

\[
gcd(a_n + 2, a_n + 1) > a_n.
\]

the condition \(a_n \geq 2^n \) holds.

Solution: For the benefit of the reader I first give a few examples and the thought process that went into finding this solution. Also, for illustration of the problem, note that the sequence

1, 2, 4, 8, 16, . . .

does satisfy this recurrence and has the strict equality \(a_n = 2^n \).

We felt that the natural approach to a problem like this was an induction. This seems to be a good technique because the sequence is defined recursively and we are trying to prove something is true for all \(n \). Direct induction seems not to work very well however because these sequences can look very strange locally. Here is one example that deflates most inductions

1, 10, 11, 33, 66, . . .

As you can see the change on a local scale things don’t behave nicely because a large early jump can lead to strange behavior later. Seeing possible difficulties we chose rather to use an argument by contradiction. But we can make one important description

\(a_n \) is monotone strictly increasing

Proof: Suppose \(a_i \geq a_{i+1} \). But by the recursion we also have \(a_{i+1} \geq \gcd(a_{i+2}, a_{i+1}) > a_i \) so we have a contradiction. ■

Now suppose \(a_k \) is the smallest element in the sequence such that \(a_k < 2^k \). Our goal will be to show that this cannot be the case. We do this by showing that each element \(a_i \) must be within its own interval \(2^i \leq a_i < 2^{i+1} \). By assumption we already have \(2^i \leq a_i \) for all \(i < k \).

First Induction \(a_i < 2^{i+1} \).

We induce downwards from \(a_k \). Since our sequence is monotonically increasing we have \(a_{k-1} < a_k < 2^k \) so our base case is done. Now we assume \(a_{i+1} < 2^{i+2} \). Then we have

\[
2^{i+1} > \frac{a_{i+1}}{2} \geq \gcd(a_{i+2}, a_{i+1}) > a_i
\]

Now that we have put all of the \(a_i \) securely in its own interval we can show that if this is the case we must have \(a_i = 2^{i+1} \) and then to a contradiction because we know how that sequence must go.

Second Induction \(a_i = 2^{i+1} \)

Date: June 21, 2011.